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Abstract

We present quantitative structure–property relationships (QSPR) for the partition of 99 organic compounds between organic and fluorinated

solvents. The approach consists of straightforward multivariate regression using the simplest topological molecular descriptors. We discuss

how to obtain the best model for each set of molecular descriptors and show that present statistical parameters are comparable to those given

by more elaborate descriptors.
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1. Introduction

The graph-theoretical approach to quantitative structure–

property relationships (QSPR) is based on a well-defined

mathematical representation of the molecular structure

according to the basic mathematical formula P ¼ f ðfDgÞ,
where P is a property, {D}is a set of molecular descriptors

and f is a properly chosen function.

Some molecular descriptors commonly named ‘‘topolo-

gical indices’’ [1,2] are derived from a well-defined math-

ematical representation of the molecular structure [3,4] and

contain relevant information about it. Owing to the com-

plexity of molecular structure, one does not expect that a

single set of descriptors will carry all the relevant structural

information. Therefore, the search for novel molecular

structure descriptors is an active research field within the

realm of QSPR theory. However, this search should not be at

random but follow some regular procedures based on the

desired attributes that a molecular structure descriptor

should exhibit [5].

For more than a century most chemists have used con-

stitutional formulae without realising that such representa-

tions of ‘‘connectedness’’ of atoms are graphs or multigraphs

[6]. As a matter of fact, the structural (or constitutional) for-

mula of a chemical compound may be regarded as molecular

graph where the vertices represent atoms while the edges

represent valence bonds [7]. Evidently, the simplest and most

obvious sort of graph-theoretical indices are atoms and che-

mical bonds. Although they have been considered as suitable

molecular descriptors, they have not been widely employed.

Several applications by two of us have demonstrated their

usefulness to predict physical-chemistry properties and bio-

logical activities [8–14]. These parameters may be calculated

solely from consideration of the molecular structure and their

chemical interpretation is quite direct. They can be computed

very readily and have the advantage that they may be applied

to quite diverse sets of structures.

Two statistical studies about the fluorophilicity of two

different sets of organic molecules have been recently

published [15,16]. The first of them reports the estimation

of the fluorophilicity of 59 fluorinated organic molecules

using a neural network (NN) combination of eight descrip-

tors chosen from a pool of almost 100 possible molecular

descriptors. The second article reports linear free energy

relation (LFER) models of the partition of 99 organic

compounds between organic and fluorous solvents. The

authors develop accurate predictive models with a standard

deviation of less than three times the estimated experimental

error. Both papers resort to standard molecular and topolo-

gical descriptors and draw conclusions about the fluoro-

philicity character of the corresponding molecular sets.

However, it is well known such kind of statistical studies

do not allow one to derive unambiguous physical chemistry

interpretations on the basis of the molecular descriptors

employed to derive the regression equations. That is to

Journal of Fluorine Chemistry 125 (2004) 43–48

* Corresponding author. Tel.: þ54-221-4214037;

fax: þ54-221-4259485.

E-mail addresses: castro@quimica.unlp.edu.ar, jubert@arnet.com.ar

(E.A. Castro).

0022-1139/$ – see front matter # 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.jfluchem.2003.09.003



say, there are no universal rules to draw conclusions on the

basis of a particular set of molecular or/and topological

descriptors because a relatively good predictive power of

regression equations does not lead to cause–effect relation-

ships between property and independent variables. For this

reason we believe that there is room for the application of

another set of molecular descriptors insofar they are readily

interpreted and give good results. In this regard, it is

particularly tempting to look for a basically simple set of

topological descriptors, such as atoms composing each

molecular species and chemical bonds connecting them in

a classical way.

The purpose of this article is to report results on fluoro-

philicity for the same 99 organic compounds reported by

Huque et al. [16] via a multilinear regression analysis based

on first- and second-order fitting polynomials. The paper is

organised as follows: in Section 2 we provide some neces-

sary basic definitions on the problem and outline the multi-

variate linear regression method. In Section 3 we discuss the

main results of the paper and compare them with those

reported by Huque et al. [16], and in Section 4 we draw some

additional conclusions.

2. The method

Molecular tendency to dissolve in fluorous media is most

commonly measured by the molecule’s partition coefficient

P between fluorous and organic phases [17]. This value is

currently transformed onto a free energy scale by taking its

natural logarithm, and the resulting quantity ln P is referred

to as the ‘‘fluorophilicity’’. Throughout this paper we will

use the same standard system employed by Huque et al. [16]

and originally proposed by Rocaboy et al. [18], that is to say,

the partition of molecules between perfluoro (methylcyclo-

hexane), CF3C6F11, and toluene, given by

ln P ¼ ln
cðCF3C6F11Þ
cðCH3C6H5Þ

� �
; T ¼ 298 K (1)

In what follows we investigate several linear regression

models of the form

ln P ¼
Xn

j¼0

cjDj (2)

where each Dj, j ¼ 0; 1; . . . ; n is a N-dimensional vector

with the values of a given topological descriptor for the N

molecules, and Dj is a vector with its N elements equal to

unity that accounts for the constant term. We choose the

simplest topological descriptors: number of atoms and

chemical bonds of each type, and eventually some of their

powers. Table 1 shows the labels for the descriptors used

in this paper, and for brevity in most discussions we will

simply give such labels instead of the actual names of the

descriptors (Table 2).

In order to avoid round-off errors in our linear regression

calculations we resort to computer algebra systems like

Maple and Derive [19,20] that enable one to solve the

least-square equations in exact rational mode if necessary.

Although this kind of calculation is commonly slow, it is

sufficiently fast for our present purposes.

We first tried to obtain the best model for a given set of

descriptors according to the criterion of smallest standard

deviation S

S2 ¼ 1

N � n � 1

XN

j¼1

r2
j (3)

where rj are the residuals. Following other authors we tried

all the combinations of k descriptors out of n for

k ¼ 1; 2; . . . ; n [21]. This procedure is time consuming

(especially when using exact rational arithmetic) because

the total number of calculations is 2n � 1. For that reason we

resorted to a different strategy: first do a linear regression

with all the descriptors and remove the one with the greatest

relative error Dcj/cj. Second, repeat the calculation with the

remaining n � 1 descriptors, and again remove the descrip-

tor with the largest relative error. Proceed exactly in the same

way for n � 2, n � 3; . . . until one descriptor and the con-

stant remain. Then choose the set with the smallest value of

S. This procedure requires only n calculations and enables us

to single out an optimum model that is very close to or in

complete agreement with the one obtained by means of the

thorough search mentioned before.

Table 1

Labels for the descriptors used in present calculations

Atoms and

bonds

Linear

variable

Quadratic

variable,

only atoms

Quadratic

variable, atoms

and bonds

C 1 12 24

H 2 13 25

F 3 14 26

O 4 15 27

N 5 16 28

P 6 17 29

I 7 18 30

Br 8 19 31

Si 9 20 32

S 10 21 33

Cl 11 22 34

C–C 12 35

C–H 13 36

C¼C 14 37

C¼O 15 38

C–O 16 39

C–C aromatic 17 40

P–C 18 41

N–H 19 42

C–N 20 43

C–N aromatic 21 44

O–H 22 45

C¼S 23 46
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Table 2

Experimental and theoretical values of ln P calculated with the models

Molecule ln Pexp DS4 (99) DS3 (99) DS3 (91) Huque et al. (91)

1. Decane �2.86 �3.58 �2.86 �2.79 �3.07

2. Undecane �3.13 �3.62 �3.11 �3.03 �3.13

3. Dodecane �3.35 �3.64 �3.36 �3.27 �3.19

4. Tridecane �3.71 �3.63 �3.61 �3.52 �3.24

5. Tetradecane �3.94 �3.59 �3.86 �3.77 �3.30

6. Hexadecane �4.50 �3.45 �4.36 �4.27 �3.41

7. Dec-1-ene �2.99 �3.75 �3.13 �3.08 �3.29

8. Undec-1-ene �3.26 �3.83 �3.38 �3.33 �3.34

9. Dodec-1-ene �3.66 �3.88 �3.63 �3.58 �3.40

10. Tridec-1-ene �3.94 �3.90 �3.88 �3.82 �3.46

11. Tetradec-1-ene �4.12 �3.90 �4.13 �4.07 �3.51

12. Hexadec-1-ene �4.70 �3.83 �4.63 �4.57 �3.62

13. Rf8CH¼CH2 2.67 2.36 2.27 2.14 2.82

14. Cyclohexanone �3.79 �3.93 �2.88 �2.92 �3.96

15. Cyclohexenone �4.06 �3.90 �3.15 �3.22 �4.25

16. Cyclohexanol �4.12 �3.92 �3.81 �3.66 �4.74

17. Trifluoroethanol �1.77 �1.78 �1.50 �1.59 �1.37

18. (CF3)2CHOH �1.02 �0.78 �0.80 �0.92 �0.70

19. Rf6(CH2)2OH 0.10 0.56 0.18 �0.01 0.47

20. Rf6(CH2)3OH �0.24 0.25 �0.08 �0.26 0.50

21. Rf8(CH2)2OH 1.02 1.53 0.95 0.73 0.72

22. Rf8(CH2)3OH 0.59 1.20 0.70 0.48 0.80

23. Rf10(CH2)3OH 1.42 2.10 1.47 1.21 1.25

24. Pentafluorobenzene �1.24 �0.95 �0.86 �0.95 �0.58

25. Hexafluorobenzene �0.94 �0.50 �0.54 �0.64 �0.12

26. Ethylbenzene �4.41 �3.65 �2.95 �2.98 �4.23

27. Dodecylbenzene �4.70 �4.78 �5.45 �5.46 �4.79

28. Rf8(CH2)3C6H5 �0.02 0.19 0.28 0.24 0.38

29. o-Rf6(CH2)3C6H4(CH2)3Rf6 1.03 1.14 1.31 1.04 1.37

30. o-Rf8(CH2)3C6H4(CH2)3Rf8 2.34 2.37 2.85 2.50 2.32

31. o-Rf10(CH2)3C6H4(CH2)3Rf10 3.62 3.39 4.39 3.96 3.23

32. m-Rf8(CH2)3C6H4(CH2)3Rf8 2.28 2.37 2.85 2.50 2.32

33. p-Rf8(CH2)3C6H4(CH2)3Rf8 2.33 2.37 2.85 2.50 2.32

34. Rf8(CH2)3Cl 0.03 1.01 1.27 1.32 0.37

35. Rf8(CH2)3NH2 0.85 1.15 1.26 1.20 1.29

36. Rf8(CH2)3NH(CH2)3Rf8 3.32 3.77 3.79 3.74 3.34

37. (Rf6(CH2)2)3P 4.41 4.75 4.31 4.36 3.75

38. (Rf8(CH2)3)P 4.41 5.27 5.87 5.81 4.79

39. (Rf8(CH2)4)3P 4.50 4.43 5.12 5.07 4.53

40. (Rf8(CH2)5)3P 4.50 3.81 4.37 4.33 4.27

41. (Rf6(CH2)2)2PC10H19 (menthyl) 1.29 0.68 �0.67 �0.29 1.11

42. (Rf8(CH2)2)2PC10H19 (menthyl) 2.70 1.83 0.87 1.18 2.10

43. (p-Rf6C6H4)3P �1.32 �0.25 �0.46 �0.71 �0.57

44. (p-Rf8C6H4)3P 0.76 0.73 1.85 1.49 0.78

45. Ph(CH2)2SiH3 �3.29 �3.09 �3.29 �3.29 �4.53

46. Ph(CH2)2SiOC8H15 �5.11 �5.16 �5.22 �5.21 �5.56

47. Ph(CH2)2SiOC6H11 (cyclohexyl) �4.82 �4.9 �4.72 �4.72 �5.56

48. Rf6I 1.31 1.08 1.29 1.33 0.34

49. Rf8I 2.04 2.08 2.06 2.06 0.93

50. Rf10I 2.84 3.03 2.83 2.80 1.48

51. Rf8CH¼CH2 2.67 2.36 2.27 2.14 2.82

52. Rf8(CH2)3SH 0.24 1.12 0.25 0.25 1.23

53. Rf8N(CH2CH2)2
O 0.86 0.18 1.15 0.99 1.48

54. Rf6S(CH2)2CO2Et �0.67 �0.41 0.10 �0.35 �0.05

55. Rf8S(CH2)2CO2Et 0.04 0.50 0.87 0.39 0.49

56. CF3SPh �2.45 �2.76 �2.30 �2.32 �2.01

57. m-CF3SC6H4CF3 �1.58 �2.03 �2.04 �1.59 �0.85

58. Rf8SPh 0.59 0.39 �0.05 0.30 �0.15

59. Rf7CH2NHMe 1.07 0.99 1.00 1.13 1.49

60. Rf7CH2NMe2 1.53 0.69 0.63 0.92 1.63

61. Rf7CH2N(CH2CH2)2O 0.14 �0.57 0.52 0.38 0.60

62. Rf7CH2NHCH(Me)Ph(þ) �0.87 �0.96 �1.34 �1.31 �0.65
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3. Results and discussion

In order to determine to which extent the conclusions

depend on the chosen set of molecules we applied the

procedure outlined in the preceding section to the whole

set of 99 molecules and to subsets of 50 and 49 molecules

chosen randomly.

So as to have a better understanding of the modelling

process we first consider the effect of each set of descriptors

separately. For brevity we name the descriptor sets DSj,

where j ¼ 1; 2; . . .. When we choose only atom descriptors

(DS1) we conclude that the optimum one-descriptor models

are always given by F, the two-descriptor models are given

by F and C and the three-descriptor models are given by F,

C, and P or by F, C, and S (depending on the set of molecules

chosen). At present it is not clear if such results have any

physical meaning or if they are merely mathematical arte-

facts; more research on this subject is yet needed to draw

satisfactory conclusions. The correlation matrix exhibits

correlation between the following pairs of descriptors:

{C, F}, {P, F}, {C, P}. However, the ratio of the largest

to the smallest eigenvalue of the correlation matrix (with all

the molecules) lmax/lmin ¼ 80:1 suggests that correlation is

not a serious problem in this case [22].

The best model for the whole set of molecules is given by

the descriptors {1, 2, 3, 5, 6, 8, 10, 11} yielding S ¼ 0:832

and a correlation coefficient R ¼ 0:951. The ‘‘leave-one-

out’’ validation test for this model yields Rv ¼ 0:940 and

Sv ¼ 0:882. The optimum model depends on the set of

molecules chosen. An additional difficulty faced in our tests

is that the descriptor vectors become linearly dependent for

some subsets of molecules. Later on we discuss this problem

in more detail.

If we consider only bond descriptors (DS2) the best one-

descriptor models are given either by C–C or C–H bonds.

The best two-descriptor models are given by C–C and C–H

Table 2 (Continued )

Molecule ln Pexp DS4 (99) DS3 (99) DS3 (91) Huque et al. (91)

63. Rf7C(O))Ph 0.48 0.44 0.40 – –

64. Rf7C(O)OCH2Ph 2.14 0.08 0.15 – –

65. p-Rf7C(O)OCH2CH4OCF3 3.15 2.96 1.59 – –

66. Rf7C(O)Sme 1.16 0.36 0.50 0.65 0.57

67. Rf7C(O)NHMe 0.15 0.36 0.34 0.16 �0.23

68. Rf7C(O)NMe2 0.34 0.03 �0.03 �0.05 0.66

69. Rf7C(O)N(CH2CH2)2O �0.62 0.13 �0.14 �0.59 �0.38

70. Rf7C(S)Me 1.08 0.36 1.48 0.89 0.19

71. Rf7C(S)NMe2 �0.66 �0.06 �0.79 �0.37 �0.20

72. Rf7C(S)N(CH2CH2)2O �1.56 �1.35 �0.90 �0.91 �1.18

73. Rf7C(S)NHCH(Me)Ph(þ) �1.84 �1.77 �2.76 �2.60 �3.18

74. C6H6 �2.77 �3.12 �2.45 �2.49 �4.12

75. CF3Ph �1.96 �2.17 �1.75 �1.81 �1.82

76. Rf6Ph 0.54 0.30 0.18 0.02 0.24

77. Rf8Ph 1.24 1.20 0.95 0.75 0.78

78. Rf10Ph 1.77 2.05 1.72 1.48 1.28

79. o-Rf8C6H4CF3 1.50 2.03 1.65 1.42 1.37

80. m-Rf8C6H4CF3 2.37 2.03 1.65 1.42 1.37

81. p�Rf8C6H4CF3 2.13 2.03 1.65 1.42 1.37

82. p-Rf8C6H4Rf8 4.98 4.67 4.35 – –

83. [p-CF3C6H4(CF2)4]2 �0.56 0.36 �0.05 �0.40 �0.18

84. o-Rf6(CH2)2C6H4Cl �0.64 �1.29 �1.35 �1.35 �0.63

85. p-Rf6(CH2)2C6H4Cl �1.02 �1.29 �1.35 �1.36 �0.63

86. p-Rf8(CH2)2C6H4Cl �0.37 �0.43 �0.58 �0.62 �0.04

87. o-Rf6(CH2)2C6H4Br �1.05 �1.33 �1.33 �1.33 �1.22

88. m-Rf6(CH2)2C6H4Br �1.44 �1.33 �1.33 �1.33 �1.22

89. p-Rf6(CH2)2C6H4Br �1.49 �1.33 �1.33 �1.33 �1.22

90. o-Rf8C6H4CO2Me �0.39 0.50 0.53 �0.60 �0.18

91. m-Rf8C6H4CO2Me 0.12 0.50 0.53 �0.60 �0.18

92. p-Rf8C6H4CO2Me �0.01 0.50 0.53 �0.60 �0.18

93. 1,3,5-Rf8C6H3(CF3)2 4.05 2.86 2.36 – –

94. 1,3,5-(Rf8)2C6H3CO2Me 4.41 3.82 3.93 – –

95. 1,3,5�(Rf8)2C6H3CH2OH 3.62 3.51 2.54 – –

96. 1,3,5-(Rf8)2C6H3CHO 4.25 3.60 3.44 – –

97. 2-Rf8C5H4N (pyridine) 0.54 0.78 0.74 0.74 0.64

98. 3-f8C5H4N (pyridine) 0.88 0.78 0.74 0.74 0.64

99. 4-Rf8C5H4N (pyridine) 0.80 0.78 0.74 0.74 0.64

Average absolute deviation – 0.40 0.46 0.34 0.44

The number of molecules appears between parenthesis.
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bonds, and the best three-descriptor models are given by C–

C, C–H and C–C(aromatic) bonds. In this case the eigen-

value ratio is even smaller lmax/lmin ¼ 10:40 suggesting a

less serious correlation problem.

The N-dimensional vector descriptors for all atoms and

chemical bonds (DS3) are linearly dependent. In order to

obtain a linearly independent set of regressors we arbitrarily

start with the first descriptor and add the remaining ones one

by one removing those that result to be linearly dependent.

We are thus left with the set of atom plus bond descriptors

with labels {1–17, 19, 20, 22, 23}.

When trying the analysis discussed above on subsets of

molecules we conclude that the optimal models with one

descriptor are always given by F. Atoms F and C contribute

to most two-descriptor models but also atom H and bond

C–C appear in some cases. The analysis of three-descriptor

models is more complicated but we also find that atoms

F and C contribute to the optimal models in most of the

tests.

The optimum model is given by the descriptors {1–11, 13,

15, 16, 19, 20} with statistical parameters R ¼ 0:967 and

S ¼ 0:715. The leave-one-out validation yields Rv ¼ 0:952

and Sv ¼ 0:790.

When we consider only atom descriptors and their squares

(DS4) we are again faced to linear dependency. Proceeding

as before we arrive at a linearly independent subset of

descriptors with labels {1–15}. The best model according

to regression is given by the descriptors {1–13, 15} with

R ¼ 0:979 and S ¼ 0:571. The leave-one-out validation test

yields Rv ¼ 0:970 and Sv ¼ 0:623.

Finally we construct a set of regressors with all atoms

and bonds plus their squares (DS5). Only those with labels

{1–17, 19, 20, 22–27, 35, 36, 39, 40, 42} are linearly inde-

pendent. The best model in this case is {1–5, 7–11, 13–15,

17, 19, 24–26, 35, 36, 39, 40} with R ¼ 0:986 and S ¼ 0:493.

The leave-one-out validation tests yields Rv ¼ 0:979 and

Sv ¼ 0:534.

The analysis of the dominant descriptors in the cases DS4

and DS5 is not of relevance because of the lack of physical

interpretation of the squares of the number of atoms and

bonds.

In order to investigate the presence of outliers we just

searched for those molecules satisfying the condition

jrij > 3AAV (C1) or jrij > 2:5AAV (C2) using the best

model for each set of descriptors. Here AAV stands for

average absolute deviation

AAV ¼ 1

N

XN

i¼1

jrij (4)

We thus obtained:

DS1 :
C1 : f65; 64g
C2 : f65; 64; 93; 41; 42g

�

DS2 :
C1 : none

C2 : f64; 93; 65; 15; 14; 34; 52; 60; 16g

�

DS3 :
C1 : none

C2 : f64; 65; 41; 42; 93g

�

DS4 :
C1 : f64g
C2 : f64g

�

DS5 :
C1 : f64g
C2 : f64; 93g

�

where each list of molecule labels indicates decreasing

values of |rj|. We appreciate that molecule 64 appears in

8 sets, molecule 65 appears in four sets and molecule 93

appears in four sets. These molecules were already identified

by Huque et al. [16] as outliers. It is not surprising that the

agreement is not complete because our descriptors are

completely different from theirs.

In order to compare our results with those of Huque et al.

[16] more closely we choose the set of 91 molecules

obtained after removing the outliers found by those authors.

In what follows we show our results in a compact form

indicating the best model and its statistical parameters for

each descriptor set:

DS1 :

f1; 2; 3; 4; 5; 6; 8; 10; 11g
R ¼ 0:967; S ¼ 0:654

Rv ¼ 0:956; Sv ¼ 0:713

8><
>:

DS2 :

f12; 13; 15; 16; 17; 18; 22; 23g
R ¼ 0:958; S ¼ 0:732

Rv ¼ 0:946; Sv ¼ 0:787

8><
>:

DS3 :

f2; 3; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17;
19; 20; 23g

R ¼ 0:979; S ¼ 0:561

Rv ¼ 0:956; Sv ¼ 0:720

8>><
>>:

DS4 :

f1; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15g
R ¼ 0:984; S ¼ 0:475

Rv ¼ 0:975; Sv ¼ 0:542

8><
>:

DS5 :

f1; 2; 3; 4; 5; 7; 8; 9; 10; 11; 13; 14; 15; 16; 17; 19;
20; 24; 25; 26; 35; 36; 40g

R ¼ 0:993; S ¼ 0:344

Rv ¼ 0:985; Sv ¼ 0:423

8>><
>>:

On the other hand, the five descriptor model proposed by

Huque et al. [16] yields S ¼ 0:321 and Rv ¼ 0:970 [16].

Finally, we have randomly divided the sets of 99 and 91

molecules into subsets of 50 and 49 in the former case and 45

and 46 in the latter one, choosing one subset to be a test set

and the remaining one to be a training set, and then reverting

their roles. The values of Rv obtained by means of this test

oscillate roughly between 0.9 and 0.98 and those of Sv

between 0.7 and 1.3. A few cases give worse results probably

because of an unfortunate effect of linear dependence.

Results are better for the set of 91 molecules than for the

set of 99 ones suggesting that the molecules removed by

Huque et al. [16] can already be considered to be outliers.
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Although the results of this test are not impressive they

strongly suggest that the simple descriptors proposed in this

paper exhibit a reasonable predictive power.

4. Conclusions

It is clear from the results above that only our best model

for the descriptor set DS5 yields statistical parameters com-

parable to the LFER model of Huque et al. [16]. If we adopt

the criterion that the best model should give the best statis-

tical parameters with the smallest number of descriptors there

is no doubt that the five descriptor LFER model is consider-

ably better than our best 23-descriptor model. However, the

construction of our descriptors is remarkably simpler because

it reduces to just counting atoms and bonds. Thus, present

results support previous studies about the use of naive

molecular descriptors to predict physicochemical properties

and biological activities [8–14].

It is also our purpose to investigate which descriptors are

most important to describe a property or activity. Present

discussion suggests that some atoms and bonds may be more

relevant than others to predict fluorophilicity. However, one

should be cautious about such statements because it is well

known that the fact that a set of descriptors exhibits a good

correlation for a given property or activity does not mean a

direct causal connection between the former and the latter.

Since the elements of the vector descriptors are positive

integers one may think that one obtains a reasonable corre-

lation by chance. In order to investigate this point further we

built sets of linearly independent vector regressors generat-

ing random integers between zero and the maximum number

of atoms that appeared in the actual descriptors. None of the

regression models constructed this way gave statistical

parameters as good as those obtained by the actual descrip-

tors. This test suggests that the least-squares fitting produced

by such simple topological indices as number of atoms and

bonds is not fortuitous.
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